

INTEGRATED MODELING AND SIMULATION OF AUTONOMOUS PARAFOIL DESCENT ON TITAN

Marco Quadrelli, Giacomo Bonaccorsi, Aaron Schutte

Presenter: Larry Matthies

Government sponsorship acknowledged. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Thanks to Dr. Larry Matthies, Evgeniy Sklyanskiy, Emily Leylek, and Erik Bailey for useful technical discussions.

Guided Descent to Landing on Titan

Why landing on Titan?

- Gases and liquids similar to Earth's
- Possible presence of underground oceans of water

Why use a parafoil?

- Cost-effective
- Ease of deployment
- Low mass compared to payload
- Precise autonomous delivery

Model development and comparison to terrestrial parafoils

Parafoil+payload mathematical models for

G&C analyses of terminal descent

Guidance and Control (G&C)

- The Guidance & Control aspects are divided into three parts:
 - a heuristic approach (Tapproach) for which no previous motion planning is required,
 - optimal trajectory planning,
 - optimal trajectory tracking.

- Implemented planning and control algorithms for all phases of parafoil guided descent:
 - Homing: parafoil deployment to vicinity of target: Turn and straight line flight
 - Energy management: vicinity of target to low altitude: "T-approach" with figure-8 turns to reduce altitude
 - Final approach: Multiple algorithms tested with increasing accuracy and computational complexity
 - Flare: Work in progress, to reduce touchdown velocity

Altitude: 37701 m Time: 222 s Alpha: 22.8 deg Beta: 0.0 deg XY Coord: -24300, -30010 m Velocity: 27.6, -2.0, -7.0 m/s

$$oldsymbol{x} = \left[u, v, w, p, q, r, x, y, z, \phi, \theta, \psi\right]^T$$

6-DoF model assumptions:

- Canopy and payload rigidly connected
- Six aerodynamic forces/moments on canopy
- Drag acting on payload
- Drag acting on suspension lines
- Buoyancy force
- Weight forces

Dynamics

 δ_l : left flap deflection $\delta_s = \frac{1}{2}(\delta_r + \delta_l)$ δ_r : right flap deflection $\delta_a = \delta_r - \delta_l$

- Aerodynamic forces and moments
- Buoyancy force
- Canopy and payload weight forces

Linearization

$$\Delta \dot{x} = A \Delta x + B \Delta u$$

Longitudinal and lateral dynamics can be studied independently:

$$\mathbf{x}_{lon} = [u, w, q, \theta]^T$$
 with $u = \delta_s$
 $\mathbf{x}_{lat} = [v, p, r, \phi, \psi]^T$ with $u = \delta_a$

Stable and controllable

Reachability Analysis – Divert Range and Wind Effect

 A complete 40 km descent was simulated for glide ratios 2 and 3 in different conditions: no wind, upwind, and downwind descent (values

in meters)

Glide ratio (L/D)	Upwind divert range	No wind divert range	Downwind divert range
2 3	74406	77146	78102
	113647	119734	122015

 Both longitudinal and lateral wind speed were then varied to obtain a map of expected divert ranges

Wind drift under different wind conditions

- Lateral wind drift up to ~ 56 km
- Longitudinal wind drift up to ~ 18 km

T-Approach

- Homing: navigate towards EMC
- Energy management: fly eightpatterns between EMTPs
- 3. Landing
 - Approach FTP
 - Turn into wind

Execute flare maneuver

T-approach concept

- 3000 - Altitude [

8000 6000

in ground frame

135 200 1809 Wind = 2.0 m/sWind = 4.0 m/s

Landing dispersion [m] with wind blowing in the East-West direction (0 deg). Wind magnitude given at 5 km altitude.

AGL, perfect state knowledge, typical wind

Final landing error [m] given the starting x,y position and wind speed.

			0.00	0.25	0.50	1.00	2.00	4.00
Initial x, y Position	4755	1545	336	274	443	234	314	347
	0	5000	187	167	150	332	343	361
	-4755	1545	184	372	218	386	15	356
[m]	-2939	-4045	184	373	290	217	40	63
	2939	-4045	263	270	282	320	359	243

Wind [m/s]

The results of Monte Carlo simulation (with different starting position/wind speed) indicate a maximum obtained error is 239 m and 332 m along Easting and Northing direction, respectively

Waypoint Trajectory Tracking

An initial homing phase was considered, during which a minimum-time path (using Linear Quadratic Optimal Control) is followed to reach an area above the target as quickly as possible as to maximize the residual altitude.

Given a sequence of spatial waypoints, a Waypoint-Tracking Model Predictive Control (WT-MPC) allows to accurately track them by linearizing the system at every time step and computing the optimal control action, given a desired time horizon which depends on the available computational power.

Different initial heading angles, same wind direction

Same initial heading angle, different wind directions

Assumptions:

- Soft constraints on final state
- Weights the distance from target
- Limits control action to limit banking angle

DSENDS E-10 to Ground Simulation

We have extended our in-house Dynamics Simulator for Entry, Descent and Landing (DSENDS) with libraries of vehicle dynamics models to handle the parafoil G&C algorithms proposed here and the specific state estimation, tracking, and control capability in conditions relevant to Titan's environment. TRN estimation is based on a SLAM-MSCKF algorithm and is a key component in this study for determining lander delivery error. For simulation purposes, the TRN estimation is carried out independently from the DSENDS simulation on a Robot Operating System (ROS) node.

Conclusions

We have considered:

- Atmospheric models and system dynamics
- Flare maneuver to reduce the touchdown speed
- A PD controller, T-approach, and optimal trajectories to minimize the final landing error
- JPL DSENDS end-to-end simulation including noisy measurements, state estimation, and vision-based navigation
- → Titan precision landing is feasible, provided sufficient knowledge of the system parameters and atmospheric models

Future Work:

- 9-DOF model implementation, provided sufficiently reliable parameters are available
- Simulation of parafoil behavior during canopy inflation
- Wind/Density estimation and/or analytical model improvement based on available data (e.g. latitude/longitude dependence)